

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER/RE EXAMINATION MAY 2025

Program: B. Tech. Efect Dun VIII

Duration: 3 Hour.

Course Code: PC-BTE801

Maximum Points:100

Course Name: Power System Dynamics and Control (R18)

Semester:VIII

Notes:

1. Question No. 1 is compulsory.

2. Solve any four questions from remaining six.

3. Draw neat diagrams wherever necessary.

4. Assume suitable data if necessary.

1418/1

Q.No.	Questions	Points	CO	BL	Modu
Q.1.					No.
a. b.	Define rotor angle stability and voltage stability. Write the expression, defining all variables used, to describe the rotating magnetic field produced by balanced the	5	1,2	1,2	1
	magnetic field produced by balanced three phase currents through sinusoidal distributed stator winding.	5	1,2 1,2	3 1,2	2 3,4
c. d.	Describe equal area criterion for transient atabiliance.	5	1,2	1,2	6
	what are the principal causes of voltage in stability?	5	1,2	1,2	7
Q.2 a.	Consider		 	 	
	$f_{as} = \cos t \qquad f_{bs} = \frac{1}{2}t \qquad f_{cs} = -\sin t$	15	1,2	1,2,3	2
	Find expressions for				
	f_{qs} , f_{ds} , and f_{0s}		1,2	1,2,3	2
	Resolve $f_{as}f_{bs}$, and f_{cs} into the directions of f_{qs} , f_{ds} for $t = \pi/3$ second and $\theta = \pi/3$ radian.				
b.	Transform stationary three phase inductive element to arbitrary reference frame.	0 5			
Q.3.a.	Describe synchronizing coefficient and explain its significance in determining steady state stability.				
b.		05	1,2	3	4
200	A 60 Hz synchronous generator having inertia constant H=9.94 MJ/MVA and transient reactance of Xd' = 0.3 pu is connected to an	15	1,2	3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058 END SEMESTER MAY 2025

generator is delivering real power of 0.6 pu, 0.8 power factor lagging to the infinite bus at the voltage of $V = 1$ pu. Assuming the per unit damping power coefficient is $D = 0.138$ Consider a small disturbance of $\Delta \delta = 10^{\circ} = 0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency.	e o				
$X_{12} = 0.2$ $X_{12} = 0.3$ $X_{12} = 0.3$ $X_{12} = 0.3$					
Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line.	10	1,2	3,4	5	-
Pm Switched off IVIZO					
For the system shown below,	10	1,2	1,2,3	5	
Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation.					
For the simple radial system shown below $Z_{LN}\angle\theta \qquad V_R$ $Z_{LD}\angle\phi$ $Z_{LD}\angle\phi$	15	1,2	1,2,3	6	
	generator is delivering real power of 0.6 pu, 0.8 power factor lagging to the infinite bus at the voltage of $V = 1$ pu. Assuming the per unit damping power coefficient is $D = 0.138$ Consider a small disturbance of $\Delta \delta = 10^\circ = 0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency. $ \begin{array}{c} X_1 = 0.2 \\ X_2 = 0.3 \end{array} $ Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line. For the system shown below, $ \begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array} $ Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation. For the simple radial system shown below $ \begin{array}{c} Z_{LN} \angle \theta & V_R \end{array} $	Assuming the per unit damping power coefficient is D = 0.138. Consider a small disturbance of $\Delta\delta = 10^\circ = 0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency. $ X_L = 0.2 $ $ X_L = 0.3 $ Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line. 10 Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation.	generator is delivering real power of 0.6 pu, 0.8 power factor lagging to the infinite bus at the voltage of $V=1$ pu. Assuming the per unit damping power coefficient is $D=0.138$. Consider a small disturbance of $\Delta\delta=10^\circ=0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency. $ \begin{array}{c} X_1=0.2\\ X_2=0.3\\ X_1=0.3\\ X_2=0.3$ Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line. 10 1,2 Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation. For the simple radial system shown below $Z_{1N} \angle \theta \qquad V_R$	generator is delivering real power of 0.6 pu 0.8 power factor lagging to the infinite bus at the voltage of $V = 1$ pu. Assuming the per unit damping power coefficient is $D = 0.138$. Consider a small disturbance of $\Delta \delta = 10^\circ = 0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency. $ \begin{array}{c} X_1 = 0.2 \\ X_2 = 0.3 \end{array} $ Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line. 10 1,2 3,4 For the system shown below, $ \begin{array}{c} X_1 \\ Y_2 \\ Y_3 \end{array} $ For the system shown below, 10 1,2 1,2,3 Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation. For the simple radial system shown below $ \begin{array}{c} X_1 \\ Y_2 \\ Y_3 \end{array} $ 15 1,2 1,2,3	generator is delivering real power of $0.6 \mathrm{pu}$, $0.8 \mathrm{power}$ factor lagging to the infinite bus at the voltage of $V = 1 \mathrm{pu}$. Assuming the per unit damping power coefficient is $D = 0.138$. Consider a small disturbance of $\Delta \delta = 10^\circ = 0.1745 \mathrm{radian}$. Obtain equations describing the motion of rotor angle and generator frequency. $ \begin{array}{c} X_1 = 0.2 \\ X_2 = 0.3 \end{array} $ Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for sudden loss of one parallel line. 10 1,2 3,4 5 For the system shown below, $ \begin{array}{c} X_1 = 0.2 \\ Y_2 = 0.3 \end{array} $ Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation. For the simple radial system shown below $ \begin{array}{c} X_1 = 0.2 \\ X_2 = 0.3 \end{array} $ 10 1,2 3,4 5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058
END SEMESTER MAY 2025

	Discuss the various transmission system characteristics by deriving appropriate equations and relevant relationships, using equations and graphical representations, among power system variables explaining the voltage stability phenomenon.				
b.	Describe typical scenario of voltage collapse.	05	1,2	1,2	6
Q. 6.		 	-		-
•	Write short notes on any two. a. High speed fault clearing. b. Steam turbine fast valving c. High speed excitation system d. Power system stabilizers.	10 10 10	1,2	1,2	7
). 7.	Describe the two important aspects in the analysis of voltage stability of a power system.	10	1,2	1,2	6
	Consider a 3 phase RL circuit defined by $\mathbf{r}_{s} = \operatorname{diag} \begin{bmatrix} r_{s} & r_{s} \\ L_{s} & M & M \\ M & L_{s} & M \\ M & M & L_{s} \end{bmatrix}$	10	1,2	1,2,3	2
	Represent the circuit in arbitrary reference frame.				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER/RE EXAMINATION MAY 2025

Program: B.Tech.

And yr. B. Tell

Duration: 3 Hour.

Course Code: PC-BTE801

Maximum Points: 100

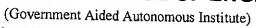
Course Name: Power System Dynamics and Control (R18)

Semester:VIII

Notes:

1. Question No. 1 is compulsory.

2. Solve any four questions from remaining six.


3. Draw neat diagrams wherever necessary.

4. Assume suitable data if necessary.

23/6/25

Q.No.	Questions	Points	CO	BL	Moduli No.
Q.1. a. b. c. d.	Discuss voltage collapse in brief. Justify the use of Parks transformation in describing the model of synchronous machine. Define steady state and transient stability. What are the principal causes of voltage in stability?	5 5 5 5	1,2 1,2 1,2 1,2 1,2	1,2 3 1,2 1,2 1,2	1 2 3,4 6 7
Q.2 a.	Discuss and derive the expressions after transforming a 3 phase balance set to the arbitrary reference frame and also discuss the balanced steady state phasor relationship in transformed variables.	15	1,2	1,2,3	2
b.	Transform stationary three phase resistive element to arbitrary reference frame.	05	1,2	1,2,3	2
Q.3. a.	Derive swing equation.	05	1,2	3	4
ъ.	A 60 Hz synchronous generator having inertia constant H=9.94 MJ/MVA and transient reactance of Xd' = 0.3 pu is connected to an infinite bus through a purely reactive circuit as shown below. Reactances are marked on the diagram on a common system base. The generator is delivering real power of 0.6 pu , 0.8 power factor lagging to the infinite bus at the voltage of V = 1 pu. Assuming the per unit damping power coefficient is D = 0.138. Consider a small disturbance of $\Delta \delta = 10^{\circ} = 0.1745$ radian. Obtain equations describing the motion of rotor angle and generator frequency.	15	1,2	3	4

SARDAR PATEL COLLEGE OF ENGINEERING

Munshi Nagar, Andheri (W) Mumbai – 400058 END SEMESTER/RE EXAMINATION MAY 2025

	$X_t = 0.2$ $X_{t} = 0.3$				
Q.4 a.	Critically analyze the application of Equal Area Criterion, for studying Transient Stability, for change in the mechanical input for the system shown below.	10	1,2	3,4	5
	$P_{m} \xrightarrow{ E' \angle \delta} X'_{d} X_{o} \qquad \text{Infinite bus bar}$ $ V \angle 0^{\circ}$				
b.	For the system shown below,	10	1,2	1,2,3	5
	Assume that input power is constant. The rotor is running at synchronous speed. Consider a three phase fault at the middle of one line. Apply modified Euler's Method and derive expressions for iterative solution of resulting swing equation.				
Q.5. a.	For the simple radial system shown below $Z_{LN}\angle\theta \qquad V_R$ $E_S \qquad \qquad$	15	1,2	1,2,3	6
	Discuss the various transmission system characteristics by deriving appropriate equations and relevant relationships, using equations and graphical representations, among power system variables explaining the voltage stability phenomenon.				
b.	Discuss any one method for prevention of voltage instability.	05	1,2	1,2	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058 END SEMESTER/RE EXAMINATION MAY 2025

Q. 6.					
	Write short notes on any two.				
	a. High speed fault clearing.	10			
	b. Steam turbine fast valving	10	1,2	1,2	7
	c. High speed excitation system	10			
	d. Power system stabilizers.	10			
Q. 7.					
a.	Describe the two important aspects in the analysis of voltage stability of a power system.	10	1,2	1,2	6
b.	Consider a 3 phase RL circuit defined by	10		1,2,3	2
	$\mathbf{r}_s = \operatorname{diag}\left[r_s r_s r_s\right]$		1,2		2
	$\mathbf{L}_{s} = \begin{bmatrix} L_{s} & M & M \\ M & L_{s} & M \\ M & M & L_{s} \end{bmatrix}$		1,2		
	Represent the circuit in arbitrary reference frame.				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi-Nagar, Andheri (W) Mumbai – 400058

END-SEM \ RE EXAMINATION MAY 2025

Program: B.Tech (Electrical) Dem VIII

Duration: 3Hr

Course Code: PE-BTE806

Maximum Points: 100

Course Name: Industrial Automation

Semester: VIII

Notes: 1) Q1. is compulsory Solve any four from remaining questions.

2) Assume Suitable data if required and justify the same.

141575

Q. No.	Questions	Points	со	BL	Mod No.
1a	What is proportional Kick? How to eliminate it?	05	02	02	02
1b	What is the difference between FAT and SAT.	05	04	02	04
1c	Explain Architecture of Industrial Automation and List the advantages of Industrial Automation.	05	01	02	01
1d	Explain different terms associated with industrial PID. Derive industrial form of PID if textbook form is 5+2/s +0.1 s.	05	03	02	05
2a	3-15 pd PY 4-20 mA 19 10 11 15 Material B 17 19 19 10 11 11 11 11 11 12 13 Material Flow Control	10	02	03	03

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi-Nagar, Andheri (W) Mumbai - 400058

END-SEM \ RE EXAMINATION MAY 2025

What are the different project stages? What are the steps involved in procurement of material / equipment.	10	04	02	04
Explain DCS in detail.	05	03	02	05
What is HMI and RTU?	05	03	03	05
What are the different data files in a PLC? Explain in detail.	10	03	03	05
Explain in detail following instructions: TOF, MOV, JMP and RES.	08	03	02	05
Write a PLC program to turn on three lamps in a sequence and turn off them in the same sequence. There is a manual start push button and stop push button, both of NO type. Do it in following ways: a) Use timers to execute the sequence. Assume sequence as: i) Lamp L1 turns ON when the process starts ii) After 5 seconds L2 starts iii) After 15 seconds L3 starts iv) All the lamps remain ON for exactly 30 seconds and then are turned OFF in the same sequence	12	01,	03	05
b) Use sequencer instruction to execute above sequence. List different PID tuning methods? Explain any one in detail.	10	02	03	02
What is a CNC machine? Explain its working principle, advantages and limitations.	10	04	02	07
Design a PI controller for following system. Design specifications are: No steady state offset to step reference signals, 2% settling time < 15 minutes and little overshoot. Assume K= 1, time constant $\tau = 5$ minutes, r= 1 unit and d=0.5 unit. $D(s) = \frac{d}{s}$ $K(s) = \frac{d}{s}$ $K(s) = \frac{d}{s}$	10	02	03	02
	Explain DCS in detail. What is HMI and RTU? What are the different data files in a PLC? Explain in detail. Explain in detail following instructions: TOF, MOV, JMP and RES. Write a PLC program to turn on three lamps in a sequence and turn off them in the same sequence. There is a manual start push button and stop push button, both of NO type. Do it in following ways: a) Use timers to execute the sequence. Assume sequence as i) Lamp L1 turns ON when the process starts ii) After 5 seconds L2 starts iii) After 15 seconds L3 starts iv) All the lamps remain ON for exactly 30 seconds and then are turned OFF in the same sequence b) Use sequencer instruction to execute above sequence. List different PID tuning methods? Explain any one in detail. What is a CNC machine? Explain its working principle, advantages and limitations. Design a PI controller for following system. Design specifications are: No steady state offset to step reference signals, 2% settling time < 15 minutes and little overshoot. Assume K= 1, time constant τ = 5 minutes, r= 1 unit and d=0.5 unit. D(s) = d/s	Explain DCS in detail. Explain DCS in detail. O5 What is HMI and RTU? What are the different data files in a PLC? Explain in detail. Explain in detail following instructions: TOF, MOV, JMP and RES. Write a PLC program to turn on three lamps in a sequence and turn off them in the same sequence. There is a manual start push button and stop push button, both of NO type. Do it in following ways: a) Use timers to execute the sequence. Assume sequence as i) Lamp L1 turns ON when the process starts ii) After 15 seconds L2 starts iii) After 15 seconds L3 starts iii) After 15 seconds L3 starts iv) All the lamps remain ON for exactly 30 seconds and then are turned OFF in the same sequence b) Use sequencer instruction to execute above sequence. List different PID tuning methods? Explain any one in detail. 10 What is a CNC machine? Explain its working principle, advantages and limitations. Design a PI controller for following system. Design specifications are: No steady state offset to step reference signals, 2% settling time < 15 minutes and little overshoot. Assume K= 1, time constant τ - 5 minutes, r= 1 unit and d=0.5 unit. D(s) = S(s) =	Explain DCS in detail. Explain DCS in detail. O5 03 What is HMI and RTU? What are the different data files in a PLC? Explain in detail. Explain in detail following instructions: TOF, MOV, JMP and RES. O8 03 Write a PLC program to turn on three lamps in a sequence and turn off them in the same sequence. There is a manual start push button and stop push button, both of NO type. Do it in following ways: a) Use timers to execute the sequence. Assume sequence as i) Lamp L1 turns ON when the process starts ii) After 15 seconds L2 starts iii) After 15 seconds L3 starts iv) All the lamps remain ON for exactly 30 seconds and then are turned OFF in the same sequence b) Use sequencer instruction to execute above sequence List different PID tuning methods? Explain any one in detail. 10 02 What is a CNC machine? Explain its working principle, advantages and limitations. O4 Design a PI controller for following system. Design specifications are: No steady state offset to step reference signals, 2% settling time < 15 minutes and little overshoot. Assume K= 1, time constant r = 5 minutes, r= 1 unit and d=0.5 unit.	Explain DCS in detail. D5 03 02 What is HMI and RTU? What are the different data files in a PLC? Explain in detail. Explain in detail following instructions: TOF, MOV, JMP and RES. Write a PLC program to turn on three lamps in a sequence and turn off them in the same sequence. There is a manual start push button and stop push button, both of NO type. Do it in following ways: a) Use timers to execute the sequence. Assume sequence as i) Lamp L1 turns ON when the process starts ii) After 15 seconds L2 starts iii) After 15 seconds L3 starts iv) All the lamps remain ON for exactly 30 seconds and then are turned OFF in the same sequence b) Use sequencer instruction to execute above sequence. List different PID tuning methods? Explain any one in detail. 10 02 03 What is a CNC machine? Explain its working principle, advantages and limitations. D6 of Seconds L3 time constant to Siminutes and little overshoot. Assume K= 1, time constant to Siminutes, r= 1 unit and d=0.5 unit. D(s) = Seconds Assume K= 1, time constant to Siminutes, r= 1 unit and d=0.5 unit.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi-Nagar, Andheri (W) Mumbai – 400058
END-SEM \ RE EXAMINATION MAY 2025

6b	For an input step of magnitude 3, determine the steady state error for the controller $K(s)$ being: (a) a proportional controller; (b) a P+D controller; (c) a P+I controller Comment on the error produced for each controller. $K(s)$	10	02	03	02
7a	List any four the names of PLC Manufacturers and programming languages? What is the role of following elements of PLC: input-output module, power supply, programming terminal.	10	01 04	02	05
7b	Explain Accuracy, Range and linearity. Explain the terms: MTTR and MTBF.	10	04	02	06

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End/Parker Semester AY2024-2025

Program: B. Tech Electrical Jun VIII

Course Code: OE-BTE805

Course Name: Image Processing

Duration: 3 Hr

Maximum Points: 100 Semester: VIII

Note: Q1 is compulsory. Solve any four questions out of remaining six questions

Assume suitable data if required.

16/125

No	Question	S									Po int	C	BL	ule
1 a	Quality of	f an in re. Just	age de	pends o	on nunict.	iber of	f pixel	s and	gray	evels of	4	1	2	no 1
b	Explain I	Aedian	filter. F	or the	follow	ing im	age pe	erform	med	ian	4	2	2	2
	24	26	34											
	38	14	32											
- 1	32 3	0	38											
c	Compare	the nu	mber o	f comp	putatio	ns to	comp	ite 25	6 poir	it DFT	4	3	2	6
		ect metl	od and	DIT F	FT alg	orithn	n.				4	3	2	6
d	Compare using direction Derive as segmental	ect met) n expr	od and	OIT F	FT alg	thres	n. holdin	ıg use	d in	lmage	4	2	2	4
d e a	Compare using dire	ect metler n exprision xample stogra	ession	OIT F	FT alg	thres	n. holdin	ıg use	d in	lmage				
d e a	Compare using directions of the compare using direction of the	ect metler n exprision xample stogra	ession	OIT F	FT alg	thres	n. holdin	ıg use	d in	lmage	4	2	3	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Restam Semester AY2024-2025

	Histogram	В:					-					T			
	Gray level r_k	0	1	2	3	4	5	6	7						
	No. of pixelsn _k	0	0	0	614	819	1230	819	614						
b	What is ed The four p Join the m and write t	pixels iaximu	of an i um nur	mage nber e	has co of pixe	ordin	ates (2,1	l) (2,2)	(2,3)	(2,4).	10	2	3	4	
3 a	Explain an 1. Sob 2. Pre 3. Gra 4. Lap	el witt dient		e follo	owing s	segmer	ntation (perate	Drs		10	2	2	4	
b	Explain va For the foll starting ponumber START	lowing int, fir	image	write	chain	code, 1	^ 10rmali:	zed cha		le to	10	3	2	4	
4 a	Compute D transforms								e		15	3	3	6	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Parental Semester AY2024-2025

	1	2	1	1							
	3	0	3	0							
	1		1	1							
b Ap											
ima	age [0-	7] gr	owing ay leve	image ent els	iancement t	echnique o	n following	05	2	3	2
	(i)	Ima	ge Ne	gative							İ
1	(ii)	Bit	plane (slicing							
	(iii)	Con	itrast s	tretching	[if $s=T[r]$ a	nd r1=3	r2=5 s1=2				
		s2=()]								
2	3	5	6								
5	1	6	2								
3	1		4								
4	-		1								
					mage compr						
					image com	oression? A		10	3	3	7
How how	the H	um	an cod	ie is decod	led?	the followi	ng image data				
How how	m Huf	um	an cod	ie is decod	led?	the following					
How how Form Gra Lev	m Huf	fman	code a	ie is decod	led? ling tree for		ng image data				


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Murnbai – 400058

End/Lend Semester AY2024-2025

			1/9	1/9	1/9	9						_	1			
		-	1/9	1/9	1/9	9										
		-	1/9	1/9	1/9	•										
	Find e	_ quival	ent filt	er in fi	requen	cy dor	nain.									
6 а		in vectook of		ntizati	on use	d for i	mage c	ompre	ssion.	Genera	te 1	0	3	3	7	
	160	160	160	160	160	160	160	160	160	80]		ļ 			
	160	200	180	180	180	180	180	200	160	80						
	160	200	220	220	220	220	220	200	160	80						
	160	200	220	230	230	230	220	200	160	80						
•	160	200	220	230	250	230	220	200	160	80						
	160	200	220	230	230	230	220	200	160	80						
	160	200	220	200	200	200	220	200	160	80						
	160	200	220	220	220	220	220	200	160	80						
,	160	160	160	160	160	160	160	160	160	80						
	80	80	80	80	80	80	80	80	80	80						
b	as fore image	st, wat proces	er, url sing al	oan etc gorith	Expl ms whi	ain in ich car	detail a be use	with ju ed for	stifica the sar		e	0	1	2	1	
7	With a algorit		tion ar	id exar	nple ex	rplain	the fol	llowing	g morp	hology	2	0	4	2	5	
	1.	Erosio	n													
	2.	Conve		l												
	3.	Hit or									•					
	4.	Thick	~													
	5.	Thinn	-													
	6.	Region	n fillin	g								j		1		- 1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End/Reexam Semester AY 2024-2025

Jyne

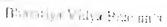
Course Code: OE-BTE805

Program: B. Tech Electrical Dem VIII

Duration: 3 Hr

Maximum Points: 100

Semester: VIII


Course Name: Image Processing

Note: Q1 is compulsory. Solve any four questions out of remaining six questions

Assume suitable data if required.

m/16/25

Q. No	Question	ns					·				Po	C	BI	
											int s	0		ule no
la	Compar	e 4-, 8-	and m-	adjac	ency.						4	1	2	1
b	Write th	e 3x3 n	nasks th	at can	be use	d as					4	2	2	2
	1. Le	ow pas	s filter										1	
	2. H	igh pas	s filter											
	3. H	igh Bo	ost filter											
c	Draw the	e flow	graph	to ev	aluate	8 poi	nt DF	T usi	ng DI	r fft	4	3	2	6
d	Explain achieved.	the p	rinciples	on	which	imag	e segi	nenta	tion c	an be	4	2	2	4
e	With an e	xample	e explair	erosi	on use	d in bi	nary ii	nage _l	proces	sing	4	4	3	5
2	Given an i equalization For the fol Draw Hist	image v on will llowing	with poo improv	or cont e the in	rast. J mage q	ustify uality Histo	how hi	istogra	ım		10	2	3	2
	Gray level r _k	0	1	2	3	4	5	6	7					
	No. of pixelsn _k	790	1023	850	656	329	245	122	81					
	What is the	eshold	ing?								10	2	3	<u> </u>
											10	ž	3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Reexam Semester 2024-2025

	varia thres	nce 4	00. Al	iriance ll blob	e 400 S occi	on a b ipy 25'	ackgro % of t	und of the im	os of mean gra f mean 16 an age area. Fin	. !				
1	Expla algor	ain reg ithms o	ion gro	owing, follow	region ng ima	splittin	g and r	egion r	nerging	10	2	2	4	 J
	Assur		max(g	(x ,y))-ı	min(g()		and ar	ıy seed	pixel for					
	155	156	156	156	157	157	156	156	7					
	156	157	156	157	155	155	154	157						
	156	156	154	154	153	152	155	156						
	155	154	155	154	152	153	154	156						
	150	153	152	153	153	152	154	157						
	150	150	150	150	152	152	155	156						
	151	151	150	151	150	153	154	154						
L	151	150	151	150	152	153	155	154						
Ė	Explain	vario	us met	hods u	sed for	image	represe	entation	n.	10	3	2	4	_
~.	or the tarting umber	bourt,	ing im first d	age wr lifferen	rite cha	in code cular fi	, norm: rst diff	alized c erence,	hain code to shape					
							*	→ ST	ART					

Dhamiya Valya Dhamai's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Ent/Reexam Semester AY2024-2025 Jyne

						J 47					
4 a C	ompute ansfori	Discre	te Fouri he imag	ier, Had e below	lamard a	nd Discrete cos pare the result	ine	15	3	3	6
					-110 0011	pare the result	3,				
	1	1	1 2								
	2	2	1 2								
	3	3	1 2	-							
	4	4	1 2	\dashv							
b Fe	or 3 bit	pixel in	age per	form g	rav level	slicing r1=3 and	d =2=5	05	2	3	4_
							u 1 <u>2</u> ~J	05	2	3	2
		VV	thout ba	ackgrou	ind						
		- Wi	th back	ground							
Fo	r the sa	me ima	ge do th	reshol	ding if T=	4					
		5 2	2 7		6	0					
	2	2 1	2		2	1					
	2	3	4		5	2					
	0	3	2		2	1					
	2	6	6		5	i					
	<u> </u>										
Ex	olain ho	w filter	ing is do	ne in f	requency	domain					
					,y) as fol			10	2	2	3
	-	0	1/6	0		· · · · · · · · · · · · · · · · · · ·					
				U							
		1/6	1/3	1/6							
1		0	1/6	0							
				2011 011 0	y domain						
Fine	d equiva	alent fil	ter in fr	equenc	y domain					1	1
						ode and Huffn	an code	10	3	3	7

Rhamiya Vidya Bhavan'a

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Reexam Semester AY2024-2025

	250	250	0=0						ļ	ı	1	
		250	250	250	250	250	250	250				
	250	250	250	250	250	250	250	250				
	250	250	250	250	250	250	250	250	-			
	200	200	200	200	200	200	200	200	-			
	200	200	200	200	200	200	200	200	=			
	200	200	200	200	200	200	200	200	-			
	200	200	200	150	150	150	150	150	-			
	100	100	100	100	100	100	100	100	-{			
b	1. J 2. V	PEG ima ector quaracter re	te on eac age Forn antization	nation on on system	is develo	ped for	hand wri	ften	10	3	3	7
b	l. J	PEG ime ector quaracter re racter re rs. Expla	age Forn nantization cognition ain the v	nation on on on onsystem arious co	mponen	ped for l	hand wri	itten s in	10	3	2	7
b	1. J 2. V The char characte	PEG ims fector quaracter re rs. Explained to plication	age Forn antization cognition ain the value	astion on a system arious co for the s	mponen ame.	ts and al	gorithms	in .				
b	I. J 2. V The characte characte detail rec With appalgorithm	PEG ims fector quaracter re rs. Explained to plication	age Forn antization cognition ain the value	astion on a system arious co for the s	mponen ame.	ts and al	gorithms	in .	10	1	2	1
b	I. J. 2. V. The characte detail recommendate with apparagorithm 1. Di 2. Cl	PEG ims fector qua fracter re rs. Expla fuired to plication fins flation osing	age Form antization cognition ain the value be used and exam	astion on a system arious co for the s	mponen ame.	ts and al	gorithms	in .	10	1	2	1
а	I. J. 2. V. The characte detail recommendate with appropriate of the characte detail recommendate of the characte detail recommendate of the characte detail recommendate of the character of the	PEG ims fector quaracter re rs. Explained to plication as flation osing onvex Hu	age Forn cognition ain the vi be used and exam	astion on a system arious co for the s	mponen ame.	ts and al	gorithms	in .	10	1	2	1
b	I. J. 2. V. The characte detail recommendate with appropriate of the characte detail recommendate of the characte detail recommendate of the characte detail recommendate of the character of the	PEG ims fector qua fracter re rs. Expla fuired to plication fins flation osing	age Forn cognition ain the vi be used and exam	astion on a system arious co for the s	mponen ame.	ts and al	gorithms	in .	10	1	2	1
a	I. J. 2. V. The characte detail recommendate with appropriate of the characte detail recommendate of the characte detail recommendate of the character of the c	PEG imserced rector quarter rector re	age Form cognition ain the vi be used and exam	asystem arious co for the s	mponen ame.	ts and al	gorithms	in .	10	1	2	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End/Reexam Semester AY2024-2025 June

	•		
Structuring E	lement		

Himmarya Vidya Ghayan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAMINATION MAY/JUNE 2025

Program: B. Tech Elect Sect VIII

Course Code: PE-BTE802

Course Name: Smart Grid

Duration: 03 Hour

Maximum Points: 100

Semester: VIII

20192

Instructions:

Attempt any FIVE questions. 1.

Draw neat diagrams wherever possible. 2.

Q.No.	Questions	Points	СО	BL	Module No.
(l(a)	What is the need of smart grid implementation? Discuss the important functions and opportunities of smart grid. Hence, explain CDM opportunities in smart grid.	01+ 06+ 03	01	L-1	01
Q. 1(b)	Explain the role of Plug in Hybrid Electric Vehicle (PHEV) in making greener future. Hence state advantages and disadvantages of PHEV from smart grid point of view.	04+ 03+ 03	01	L-1	02
Q. 2 (a)	List the different types of Smart appliances used in smart grid. Explain the key features of smart appliances. Hence, describe the different tasks to be performed by home area network (HAN) in smart grid environment.	02+ 04+ 04	01	L-1	02
Q. 2 (b)	What is GIS? Explain the complete GIS process with flowchart and it's application in different fields. State advantages and disadvantages of GIS.	01+ 02+ 01+ 03+ 03	02	L-1	03
Q. 3 (a)	Explain the working of Phasor Measurement Unit with block diagram in detail. State the advantages of PMU over the conventional methods.	02+ 06+ 02	02	L-1	03
Q. 3 (b)	Explain the significance of smart storage. Hence describe pumped hydro compressed air energy storage with diagram in detail.	02+ 08	02	L-1	03

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAMINATION MAY/JUNE 2025

Q. 4 (a)	What is the need of microgrid? How microgrid formation takes place? Hence explain different modes of operation of microgrid.	01+ 02+	03	L-1	04
Q. 4 (b)	Write detail notes on the following by explaining working principle with diagram and it's applications.	05			
Q. + (b)	(1) Micro turbine.(2) Thin film solar cell.(3) Fuel cells.	04+ 04+ 04	03	L-1	04
Q. 5 (a)	Why power quality audit is necessary in smart grid? Hence explain the various steps followed to conduct power quality audit.	04+ 04	03	L-1	05
Q. 5 (b)	Explain the different power quality issues of grid connected renewable energy sources integrated in Smart Grid. Hence, what is power quality conditioner? Explain different power quality conditioners used in Smart Grid (Any Two).	03+ 01+ 04+ 04	03	L-1	05
Q. 6 (a)	What is the importance of information and communication technology system (ICT) in smart grid environment? Hence explain the advanced metering infrastructure (AMI) used for Smart Grid in detail.	04+ 04+	04	L-1	06
	Discuss the wireless mesh network used for smart grid communication.	04			•
Q. 6 (b)	Explain Home area network (HAN), neighbourhood area network (NAN), wide area network (WAN) and do their comparative analysis.	02+02 +02+02	04	L-I	06
Q. 7 (a)	What is cloud computing? Hence draw and explain the cloud computing architecture.	01+01 +04		Π	
Q. ((#)	Explain the solution to smart grid cyber security system.	04	04	L-1	07
Q. 7 (b)	Explain the different cloud computing opportunities and challenges. Hence explain cloud based smart meter.	04+ 04+ 02	04	L-1	07

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM / RE-EXAMINATION MANY JUNE 2025

Program: B. Tech was w. A. Teels

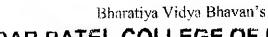
Course Code: PE-BTE802

Course Name: Smart Grid

Duration: 03 Hour

Maximum Points: 100

Semester: VIII


Instructions:

1. Attempt any FIVE questions.

2. Draw neat diagrams wherever possible.

2516/25

Q.No.	Questions	Points	СО	BL	Module No.
Q. 1(a)	What is the need of smart grid implementation? Discuss the important functions and opportunities of smart grid. Hence, explain CDM opportunities in smart grid.		01	L-1	01
Q. 1(b)	Explain the role of Plug in Hybrid Electric Vehicle (PHEV) in making greener future. Hence state advantages and disadvantages of PHEV from smart grid point of view.		01	L-1	02
Q. 2 (a)	List the different types of Smart appliances used in smart grid. Explain the key features of smart appliances. Hence, describe the different tasks to be performed by home area network (HAN) in smart grid environment.	02+ 04+ 04	01	L-1	02
Q. 2 (b)	What is GIS? Explain the complete GIS process with flowchart and it's application in different fields. State advantages and disadvantages of GIS.	01+ 02+ 01+ 03+	02	L-1	03
Q. 3 (a)	Explain the significance of smart storage. Hence describe pumped hydro compressed air energy storage with diagram in detail.	02+ 08	02	L-1	03
Q. 3 (b)	Explain the working of Phasor Measurement Unit with block diagram in detail. State the advantages of PMU over the conventional methods.	02+ 06+ 02	02	L-1	03

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEM/RE-EXAMINATION MAY/JUNE 2025

Q. 4 (a)	What is the need of microgrid? How microgrid formation takes place? Hence explain different modes of operation of microgrid.	01+ 02+ 05	03	L-1	04
Q. 4 (b)	Write detail notes on the following by explaining working principle with diagram and it's applications. (1) Micro turbine.	04+	03	L-1	04
	(2) Variable speed wind generators. (3) Fuel cells.	04+ 04			•
Q. 5 (a)	Explain the different power quality issues of grid connected renewable energy sources integrated in Smart Grid. Hence, what is power quality conditioner? Explain different power quality conditioners used in Smart Grid (Any Two).	03+ 01+ 04+ 04	03	L-1	05
Q. 5 (b)	Why power quality audit is necessary in smart grid? Hence explain the various steps followed to conduct power quality audit.	04+ 04	03	L-1	05
Q. 6 (a)	What is the importance of information and communication technology system (ICT) in smart grid environment? Hence explain the advanced metering infrastructure (AMI) used for Smart Grid in detail.		04	L-1	06
	Discuss the wireless mesh network used for smart grid communication.	04			•
Q. 6 (b)	Explain Home area network (HAN), neighbourhood area network (NAN), wide area network (WAN) and do their comparative analysis.	02+02 +02+02	04	L-1	06
Q. 7 (a)	What is cloud computing? Hence draw and explain the cloud computing architecture.	01+01 +04			
<u> (~)</u>	Explain the solution to smart grid cyber security system.	04	04	L-1	07
Q. 7 (b)	Explain the different cloud computing opportunities and challenges. Hence explain cloud based smart meter.	04+ 04+ 02	04	L-1	07

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination/ Re-Examination May/June-2025

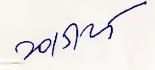
Max. Marks: 100

Class: B.TECH. Ever Semester: VIII

Name of the Course: Advanced Electric Drives

Duration: 03 Hours

Program: B.TECH. (Electrical) Course Code: PE-BTE 805


Instructions:

• Solve any four questions.

Answers to all sub questions should be grouped together

• Figures to the right indicates full mark

Assume suitable data if required and justify the same.

Qu. No	Description of question	Max. Marks	СО
1. a)	What are the limitations of per phase equivalent circuit model of three phase induction motor? Suggest the applications where this model is used and reasons for the same.	05	02
1b)	For low speed operation of induction motor, it is difficult to maintain the constant flux using V/F control. Justify it.	05	02
1.c)	What is the harmonic spectrum in phase voltage and line voltage output of square wave inverter.	05	02
1.d) 	What are the benefits of adding third harmonic voltage in modulating wave of sine-triangle PWM technique control of three phase inverter?	0 5	01
2. a)	Discuss the constant torque and constant power operation of separately excited DC motor with the torque, power, current, and voltage and speed characteristics.	08	01
2. b)	Develop the model of three phase induction motor in stationary reference frame. And draw the equivalent circuit.	12	03

		-18-1
What is stator flux oriented control of three phase induction motor? Compare the direct and indirect stator flux oriented control of three phase induction motor.	12 •	02
Develop the torque equation of three phase induction motor in: (i) Stationary reference frame (ii) Synchronously rotating reference frame.	08	02
What is indirect rotor flux oriented control (FOC) of three phase induction motor? Draw the block diagram and discuss the closed-loop implementation under constant flux operation of induction motor.	12	03
What is four quadrant operation of separately excited DC motor? Draw the circuit and explain this operation by DC-DC converter.	08	03
What is direct torque control (DTC) of three phase IM? Develop the mathematical equations for the implementation of DTC of three phase IM.	12	03
Discuss the Sine-Triangle PWM technique to control the inverter. Compare the magnitude of output voltage of inverter in sine-triangle PWM technique and square wave inverter technique.	08	01
For space vector modulation technique, calculate the magnitude and angle of all switching positions (eight switching positions) and draw its space diagram.	12	01
A PMSM is controlled in field weakening mode. Draw the block diagram and suggest the suitable control technique.	08	02
Draw the schematic diagram of synchronous machine and discuss the model of synchronous motor in synchronous reference frame	10	03
What is the working principle of switched reluctance motor (SRM)? Discuss the different configurations and control techniques of SRM drive.	10	02
	Compare the direct and indirect stator flux oriented control of three phase induction motor. Develop the torque equation of three phase induction motor in: (i) Stationary reference frame (ii) Synchronously rotating reference frame. What is indirect rotor flux oriented control (FOC) of three phase induction motor? Draw the block diagram and discuss the closed-loop implementation under constant flux operation of induction motor. What is four quadrant operation of separately excited DC motor? Draw the circuit and explain this operation by DC-DC converter. What is direct torque control (DTC) of three phase IM? Develop the mathematical equations for the implementation of DTC of three phase IM. Discuss the Sine-Triangle PWM technique to control the inverter. Compare the magnitude of output voltage of inverter in sine-triangle PWM technique and square wave inverter technique. For space vector modulation technique, calculate the magnitude and angle of all switching positions (eight switching positions) and draw its space diagram. A PMSM is controlled in field weakening mode. Draw the block diagram and suggest the suitable control technique. Draw the schematic diagram of synchronous machine and discuss the model of synchronous motor in synchronous reference frame. What is the working principle of switched reluctance motor (SRM)?	Develop the torque equation of three phase induction motor in: (i) Stationary reference frame (ii) Synchronously rotating reference frame. What is indirect rotor flux oriented control (FOC) of three phase induction motor? Draw the block diagram and discuss the closed-loop implementation under constant flux operation of induction motor. What is four quadrant operation of separately excited DC motor? Draw the circuit and explain this operation by DC-DC converter. What is direct torque control (DTC) of three phase IM? Develop the mathematical equations for the implementation of DTC of three phase IM. Discuss the Sine-Triangle PWM technique to control the inverter. Compare the magnitude of output voltage of inverter in sine-triangle PWM technique and square wave inverter technique. For space vector modulation technique, calculate the magnitude and angle of all switching positions (eight switching positions) and draw its space diagram. A PMSM is controlled in field weakening mode. Draw the block diagram and suggest the suitable control technique. Draw the schematic diagram of synchronous machine and discuss the model of synchronous motor in synchronous reference frame What is the working principle of switched reluctance motor (SRM)?